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Quadratic Artificial Viscosity in Numerical Magnetic Gas Dynamics* 

A form of artificial viscosity which is quadratic in the velocity gradient has 
been used extensively in numerical gas dynamics since its introduction by von 
Neumann and Richtmyer [l] twenty years ago. Its chief virtue is that it produces 
a shock transition whose width is constant (in Lagrangian coordinates) and 
independent of both the shock strength and the initial state of the medium. The 
purpose of this note is to investigate to what extent these desirable properties 
are preserved when a quadratic viscosity is used for magnetic gas dynamic shock 
problems. 

We consider the case of a plane shock in an initially uniform, infinitely 
conducting fluid, together with an initially uniform magnetic field aligned perpen- 
dicular to the shock velocity. We follow the treatment given in Ref. [l], and 
analyze the structure of the steady-state shock by looking for running-wave 
solutions of the Lagrangian equations of motion. If the medium has initial density 
pO and satisfies an ideal gas equation of state, then the equations of motion may be 
written 

where 

r = 4pll 3 (1) 
p& = -(P + 4 + tm5% 3 (2) 

,f? = -(p + 4) K (3) 
E = PJ’KY - 11, (4) 

@H = --r/V, (5) 

01 = Lagrangian coordinate, taken as the initial position of the particle; 
V = specific volume; 
u = particle velocity; 
E = internal energy/mass; 
H = magnetic field; 
p = fluid pressure; 
q = viscosity term; 
p = permeability; 
y = ideal gas gamma. 

* This work was supported by the Defense Atomic Support Agency. 
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Subscript LY. denotes partial differentiation with respect to LX. Quantities in front 
of shock will bear the subscript 0; quantities behind shock will bear the subscript 1. 

We assume a solution in which the dependent quantities are functions only of 
the variable w = CL - st, where s is the time rate of change of a? at the shock front. 
(If u,, is the initial particle velocity ahead of the shock and U is the Eulerian shock 
velocity, then s = U - u,, .) The equations of motion then reduce to a set of 
ordinary differential equations in the independent variable w; these equations are 
easily solved, and in particular we may derive the following expression for q: 

The constants C, , C, are evaluated by use of the boundary conditions q = 0 
when V = V,, and V = V, , and the final result is 

qJ7= (+)lE+ (V, - V)(V - V,)(V - 51, 

where 

These results are independent of the form of q. We now specify that q is the 
von Neumann-Richtmyer quadratic viscosity, given by 

q = ; (z&)2 when % < 0, 

and zero otherwise. (The constant I has the dimensions of length and is adjusted 
to give the desired shock sharpness in a numerical calculation.) This is equivalent to 

q = uPo~)2 dV 2 dV - - 
V ( ) dw 

when x > 0, 

and zero otherwise. Inserting (10) into (7) we obtain the differential equation 

dw = * 21 (y + l)( v0 - ;;IJ - V,)(V - [) dv9 

from which the Lagrangian shock width follows by integration, 

Aa=,&$j;d (V, - V)(V y V,)(V - 5) dv. (12) 
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In general, this integral cannot be evaluated in closed form in terms of elementary 
functions; however, various special cases may be treated, and information gained 
about the behavior of dol. First of all, since 5 = 0 when y = 2, we find that 
Aa is constant for this case, and independent of initial conditions; specifically, 
when y = 2 we have 

(13) 

When y # 2 it is useful to have .$ expressed in terms of p1 and downstream 
conditions only; this may be achieved by using the magnetic gas dynamic Rankine- 
Hugoniot relations [2]. These equations relate conditions on both sides of the 
shock, and can be put in the form [3] 

J&/HO = 7, 

where 

Pl r=-, 
PO 

Ro=&. 

(14) 

1 =o, 
1 (15) 

1 =o, 
t (16) 

Equations (15) and (16) constitute a set of two linear equations in the two 
variables p. and pos2; a solution exists only if the determinant of the coefficients 
vanishes, which leads to the condition 

VT-1 ~Y/(Y - 1) + (71 - l)“/Ro -= 
7-l (Y + 1Hr - 1) - 7 * 

Solving for pos2 yields 

2 _ PO 
[ 

n-l 
“-PO7 7-l 

+ 7+1 
R,’ I 

Using (14), (17), and (18) in Eq. (8) then leads to 

E = 2vo (+j+)[ a-7 1 (Ro + I)(0 + 1) + 7(0 - 3) ’ (19) 

(17) 

(18) 
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where CJ = (y + I)/(y - 1). The range of 77 is 1 -=c 9 < u, and at the extremities 
of this range we have 

Y--2 5 = (----)( 2 f:Ro ) at 7 = 1 (weak shock), 
Y+l 

( = 0 at 7 = u (strong shock). (21) 

For y > 2 we have 5 > 0, and it can be shown from (19) that d&d7 < 0. Therefore, 
using (20), we may show that 

Y--2 M(---) 2vo 
Y + 1 

- < (5) vo < (S) v, d VI. 
(2 + yR0) 

(22) 

Since t < 0 for y < 2, we may then write the following inequality, valid for all y: 

f < v,. (23) 

This inequality insures that the integrand of (12) is always real, and since the 
integral converges we conclude that dol is finite for all y. 

It follows from Eqs. (12,21) that the shock width for an infinitely strong shock 
is given by 

(A& = d&-$ (24) 

for any y. To derive results for other shock strengths, it is useful to transform (12) 
to another form. It can be shown by contour integration that (12) is equivalent to 

where 

z(5) = s: li (V, - x)(v,x- x)(5 - x) dx 
(-co < ( < VI). (26) 

For y > 2 we have 5 3 0 and 1(.$) 2 0; it therefore follows from (25) that 
AO~ > (Aa)8 when y > 2. Similarly, when y < 2 we have 5 < 0, I([) < 0, and 
Aa < (Acx)~ for this case. 
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For an infinitely weak shock V, = VI , 

m = j: (vo -;;& = r (J v” 
vo - !T 

- 1) 

(-00 < [ < V,). (27) 

Putting (27) into (25), and using the value of [ given in (20), we obtain the shock 
width ratio, 

where 

(A 4w 8 
o,= 2--yfS’ (28) 

2 = (Y 4- 1) (1 + $ &), 

(Aa)w = shock width for weak shock, 

(Aa)s = shock width for strong shock. 

We may assume that the maximum variation in shock width occurs when an 
infinitely strong shock decays to an infinitely weak one. (To prove this rigorously, 
we would have to show that the integral in (12) is a monotonically increasing 
(decreasing) function of 7 for y < 2 (r > 2) in the range 1 < r] < cr. This is 
somewhat troublesome to demonstrate analytically for general values of y, 
V. , and R, ; however, numerical calculations suggest that this is indeed the case.) 
Granted the assumption, it is then clear that the extreme values of (ALx),/(~cx), 
yield absolute limits for the variation of shock width when a quadratic viscosity 
is used for the type of problem we have discussed. 

For instance, when y < 2 we find that (Aa),/(Aa)~ takes its minimum value at 
R, = 0, y = 1 (values of y less than one are not physically admissable), and this 
minimum value is v’/t = 0.8165. Consequently, when y < 2 we must always have 

(A& > (AC& > O.S165(Ac+. 

This range of shock width variation is not likely to cause any difficulty in practical 
calculations. 

Similarly, when y > 2, we find that (Aa)w/(Aa)s takes on a maximum with 
respect to R, when R, = 0, and the value of this maximum is d(r + 1)/3. 
Consequently, when y > 2 we must always have 

(4s -=c (da), < (A& 2/w. 
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For most physically reasonable values of gamma, this range of variation is probably 
acceptable in practical numerical calculations. Thus, for a gamma as high as eight, 
the shock width for a weak shock cannot be larger than 1.7321 times the shock 
width for a strong shock. 

In conclusion, we point out that these results apply only to the simplest case of 
a plane, magnetic gas dynamic shock in which the magnetic field is perpendicular 
to the shock velocity. When the magnetic field is inclined to the direction of the 
shock velocity, the situation becomes more complex and the shock width may 
depend on the angle between the field and the velocity. Such problems were not 
considered here. 
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